IJIAET International Journal of Innovative Analyses and Emerging Technology

| e-ISSN: 2792-4025 | http://openaccessjournals.eu | Volume: 1 Issue: 5

On Methods of Searching for Generalized Solutions of Simple Differential Equations

Kamoliddin Shodiyev

Samarkand State Institute of Architecture and Construction, Uzbekistan

Abstract. The article discusses methods for solving simple differential equations of generalized functions.

Keywords: generalized function, differential equations, simple, solution, example

Examples of finding generalized solutions of simple differential equations using classical solutions are given. Suppose we have a simple *m*-order differential equation

$$\sum_{k=0}^{m} a_k(x) y^{(k)} = f(x) (1)$$

Here $a_k(x) \in C^{(\infty)}(\mathbb{R}^1)$ va $f \in D'(\mathbb{R}^1)$.

Definition: Optional $\varphi(x)$ for $\in D(\mathbb{R}^1)$ in the generalized sense of equation (1), i.e.

$$\left(\sum_{k=0}^{m} a_k(x) y^{(k)}, \varphi\right) = (f, \varphi)$$

A generalized function $y(x) \in D'(R^1)$ satisfying the equation is called a generalized solution to equation (1).

Consider examples of finding generalized solutions to simple differential equations.

1-Example. Find a generalized general solution of the equation y'=0 in the space $D'(R^1)$?

Solution. Suppose there is a solution $y \in D'$. Anyway in this case The following equation is valid for a principal function $\varphi \in D$.

$$y', \varphi') = 0$$
 (2)

It is known that for an arbitrary function $\varphi_0(x)$ satisfying the condition, $\int_{-\infty}^{+\infty} \varphi_0(x) dx = 1$, an arbitrary function $\varphi \in D(\mathbb{R}^1)$ can be expressed as follows:

$$\varphi(x) = \varphi_0 \int_{-\infty}^{+\infty} \varphi(x) dx + \varphi'_1(x) , \varphi_1 \in D(\mathbb{R}^1), \quad (3)$$

Considering (3), we can write the following:

$$(\mathbf{y}, \boldsymbol{\varphi}) = \left(y, \varphi_0 \int_{-\infty}^{+\infty} \varphi(x) dx + \varphi_1'(x) \right) =$$
$$= (y, \varphi_0) \int_{-\infty}^{+\infty} \varphi dx + (y, \varphi_1')$$
(4)

From here we take (2) and form $(y, \varphi_1) = 0$ va $(y, \varphi_0) = c$. In this case

$$(\mathbf{y}, \boldsymbol{\varphi}) = \mathbf{c} \int_{-\infty}^{\infty} \varphi dx = (\mathbf{c}, \boldsymbol{\varphi}), \quad \forall \varphi \in D$$

that is, we create y = c.

2-Example. $y^{(m)} = 0, m = 2, 3, \dots$

Solution. The equation $y^{(m-1)} = z, y^{(m-2)} = z, ...$ can be reduced to solving a simple differential equation of the form z' = f(x).

ISSN 2792-4025 (online), Published under Volume: 1 Issue: 5 in October-2021 Copyright (c) 2021 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY).To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

IJIAETInternational Journal of Innovative
Analyses and Emerging Technology

e-ISSN: 2792-4025 | http://openaccessjournals.eu | Volume: 1 Issue: 5

Using the result of Example 1, we see that the general solution of a simple differential equation of order m has the following form:

 $y(x) = c_0 + c_1 + \dots + c_{m-1}x^{m-1}.$

Now let's look at simple differential equations with variable coefficients:

1.
$$xy' = 1; 2. x^2y' = 0; 3. y'' = \delta(x)$$

4.
$$(x + 1)y'' = 0$$
; 5. $(x + 1)^2 y'' = 0$; 6. $(x + 1)y''' = 0$

To solve these equations, we use $\theta(x)$ - in the cavity and $\delta(x)$ –Dirac functions δ and their derivatives; It is known that the equation $\theta'(x) = \delta(x)$ is true.

According to the definition of a generalized solution and the rules for calculating generalized products, generalized solutions of the above equations have the following form.

- 1. $y(x) = c_0 + c_1 \theta(x) + ln|x|$
- 2. $y(x) = c_0 + c_1 \theta(x) + c_3 \delta(x)$
- 3. $y(x) = c_0 + c_1 x + x\theta(x)$
- 4. $y(x) = c_0 + c_1(x) + c_2\theta(x+1)(x+1)$
- 5. $y(x) = c_0 + c_1(x) + c_2(x+1) + c_3\theta(x+1)(x+1)$
- 6. $y(x) = c_0 + c_1(x) + c_2 x^2 + c_3 \theta(x+1)(x+1)^2$

We present an equation for finding generalized general solutions of homogeneous simple differential equations with a constant second-order coefficient and their solution:

 $af''(x) + bf'(x) + cf(x) = m\delta(x) + n\delta'(x)$ Example 1. $f''(x) + 2 * f' + f(x) = 2\delta(x) + \delta'(x)$ Solution. $f(x) = \theta(x) e - x (1 + x).$ Example 2. $f''(x) + 4f(x) = \delta(x)$ Solution. $f(x) = \frac{1}{2}\theta(x)sin2x$. Example 3. $f''(x) - 4f(x) = \delta(x) + \delta'(x)$

Solution. $f(x) = \theta(x)e^{2x}$.

The solutions to these equations are found by searching in the form $f(x) = \theta(x)z(x)$, $z \in C^2(R')$.

References

- 1. Владимиров В.С. Уровненнияматематичской физики, изд. "Наука", 1971.
- 2. Сборник задач по уровнениемматематичской физики, под редакции В.С. Владимиров. изд. "Наука", Главное редакции физико- математичской литературы, 1970.
- 3. Shodiyev, K. (2021). THE USE OF ECONOMIC AND MATHEMATICAL METHODS WHEN ANALYZING THE ACTIVITIES OF ENTERPRISES. Scientific progress, 2(3), 108-118.
- 4. Shodiev, T., Turayey, B., &Shodiyev, K. (2021). ICT and Economic Growth Nexus: Case of Central Asian Countries. Procedia of Social Sciences and Humanities, 1.
- 5. Shodiyev, K. (2021). Contribution of ict to the tourism sector development in Uzbekistan. ACADEMICIA: AN INTERNATIONAL MULTIDISCIPLINARY RESEARCH JOURNAL, 11(2), 457-461.
- 6. Шодиев, К. (2021). ТУРИСТИКСОҲАДАКЛАСТЕРВАДАВЛАТХУСУСИЙШЕРИКЧИЛИГИАСОСИДАТАДБИРКОРЛИКН ИРИВОЖЛАНТИРИШ. Scientific progress, 1(6), 857-864.
- 7. Shodiyev, K. (2021). OPTIMIZATION OF PRODUCTION ACTIVITY OF THE TOURIST ENTERPRISE. Academic Journal of Digital Economics and Stability, 6, 106-114.

ISSN 2792-4025 (online), Published under Volume: 1 Issue: 5 in October-2021 Copyright (c) 2021 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

IJIAET International Journal of Innovative Analyses and Emerging Technology

e-ISSN: 2792-4025 | http://openaccessjournals.eu | Volume: 1 Issue: 5

- 8. Shodiev, K. (2021). THE ENTREPRENEURSHIP DEVELOPMENT ON THE BASIS OF GOVERNMENT– PRIVATE PARTNERSHIP AND CLUSTERING IN THE TOURISTIC SPHERE. ResearchJet Journal of Analysis and Inventions, 2(04), 177-183.
- 9. Sirojiddinov, U. S., &Shodiyev, K. (2021). Investigation of Alkali Cements and Concrete Based on Local Raw Materials. International Engineering Journal For Research & Development, 6(3), 1-16.
- 10. Atamurodov, B., Sirozhiddinov, U., &Kamolov, A. Investigation of Alkali Cements and Concrete Based on Local Raw Materials. JournalNX, 359-364.
- 11. Qizi, Y. Z. S. (2021). Determination of pressure in the plunger during the operation of oil wells by submersible pumps. ACADEMICIA: An International Multidisciplinary Research Journal, 11(3), 159-163.
- 12. Sirojiddinov, U. S., &Shodiyev, K. (2021). ALKALINEACTIVATED OIL-WELL CEMENTS AND SOLUTIONS ON THE BATE OF LOCAL ACTIVE MINERAL SUBSTANCES AND WASTES OF PRODUCTION. Oriental renaissance: Innovative, educational, natural and social sciences, 1(5), 486-491.
- 13. Shodiyev, K. (2021). FEATURES OF STATE REGULATION OF DEVELOPMENT OF TOURISM IN UZBEKISTAN. Oriental renaissance: Innovative, educational, natural and social sciences, 1(5), 492-497.
- 14. Shodiyev, K. (2021). Contribution of ict to the tourism sector development in Uzbekistan. ACADEMICIA: AN INTERNATIONAL MULTIDISCIPLINARY RESEARCH JOURNAL, 11 (2), 457-461.
- 15. Shodiyev, K. (2021). The Contribution of ICT to the Development of Tourism in Uzbekistan. Academic Journal of Digital Economics and Stability, 9, 38-42.
- 16. Shodiyev, K. (2021). THE USE OF ECONOMIC AND MATHEMATICAL METHODS WHEN ANALYZING THE ACTIVITIES OF ENTERPRISES. Scientific progress, 2(3), 108-118.